Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ming-Xue Li, ${ }^{\text {a }}{ }^{*}$ Jing Zhou, ${ }^{\text {a }}$ Lin Yan ${ }^{\text {b }}$ and Jing-Ping Wang ${ }^{\text {a }}$

${ }^{\text {a }}$ Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475001, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Pharmacy, Henan University, Kaifeng, Henan 475001, People's Republic of China

Correspondence e-mail:

limingxue@henu.edu.cn

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.043$
$w R$ factor $=0.100$
Data-to-parameter ratio $=13.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
trans-Bis[acetone (2-oxidobenzoyl)hydrazonato$\left.\kappa^{2} N, O\right]$ diaquazinc(II)

In the title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, the $\mathrm{Zn}^{\text {II }}$ atom lies on an inversion centre, and is coordinated in a distorted octahedral geometry by two carbonyl O atoms and two imine N atoms from two anionic bidentate acetone (2oxidobenzoyl)hydrazone ligands and two aqua ligands. The complexes are linked together via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, leading to a two-dimensional network.

Comment

Recently, there has been considerable interest in the chemistry of metal complexes with Schiff base ligands containing N and O atoms as donors (Ali \& Livingstone, 1974; Li et al., 2004; Rodriguez-Arguelles et al., 2004). Here, we report the crystal structure of the title compound, (I).

In compound (I), $\mathrm{Zn}^{\mathrm{II}}$ atom lies on an inversion centre and exhibits a distorted octahedral coordination geometry, with carbonyl atom O 2 and imine atom N 2 of the anionic acetoneN -salicyloylhydrazone ligands in the equatorial plane, and water molecules (O3) in the axial positions (Fig. 1). The phenol group of the ligand is deprotonated, in contrast with the $\mathrm{Cu}^{\text {II }}$ complex with an analogous ligand (Kraudelt et al., 1996). The C $7-\mathrm{O} 2$ and $\mathrm{C} 8-\mathrm{N} 2$ bond distances (Table 1) are mostly consistent with double-bond character. In contrast, the $\mathrm{C} 1-\mathrm{O} 1$ and $\mathrm{C} 7-\mathrm{N} 1$ bond lengths are within the range for normal single bonds (Hu et al., 2006).
There is an intramolecular $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1$ hydrogen bond (Table 2). The complexes are linked via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a two-dimensional network (Fig. 2).

Experimental

All reagents were commercially available and of analytical grade. To a solution of $\mathrm{Zn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.110 \mathrm{~g}, 0.5 \mathrm{mmol})$ in methanol (5 ml) was slowly added a suspension of acetone-N-salicyloylhydrazone ($0.192 \mathrm{~g}, 1.0 \mathrm{mmol}$) in methanol $(10 \mathrm{ml})$. The suspension dissolved partially, and after stirring for 24 h , the reaction mixture

Received 11 August 2006 Accepted 18 August 2006

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Atoms $\mathrm{N} 2 A, \mathrm{O} 2 A$ and $\mathrm{O} W A$ and unlabelled atoms are related to atoms $\mathrm{N} 2, \mathrm{O} 2$ and $\mathrm{O} W$ and other labelled atoms by the symmetry operation $(2-x,-y$, $1-z$).
was filtered. Crystals of (I) suitable for X-ray diffraction analysis were obtained from the filtrate by slow evaporation at room temperature. Elemental analysis, calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Zn}$: C49.65, H 5.42, N 11.58%; found: C 49.44, H 5.33, N 11.45%.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	$Z=4$
$M_{r}=483.82$	$D_{x}=1.412 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $C 2 / c$	Mo $K \alpha$ radiation
$a=12.246(3) \AA$	$\mu=1.12 \mathrm{~mm}^{-1}$
$b=8.6666(18) \AA$	$T=173(2) \mathrm{K}$
$c=21.714(4) \AA$	Irregular fragment, colourless
$\beta=98.955(4)^{\circ}$	$0.20 \times 0.16 \times 0.12 \mathrm{~mm}$
$V=2276.3(8) \AA^{3}$	

Data collection

Bruker SMART APEX CCD areadetector diffractometer

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 2001)
$T_{\text {min }}=0.807, T_{\text {max }}=0.877$

Refinement

Refinement on F^{2}	H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.048 P)^{2}\right]$
$w R\left(F^{2}\right)=0.100$	where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$S=1.00$	$(\Delta / \sigma)_{\max }<0.001$
1990 reflections	$\Delta \rho_{\max }=0.46 \mathrm{e}^{-3}$
144 parameters	$\Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{O} 2$	$2.062(2)$	$\mathrm{C} 7-\mathrm{O} 2$	$1.243(4)$
$\mathrm{Zn} 1-\mathrm{O} W$	$2.074(2)$	$\mathrm{C} 7-\mathrm{N} 1$	$1.341(4)$
$\mathrm{Zn} 1-\mathrm{N} 2$	$2.204(3)$	$\mathrm{C} 8-\mathrm{N} 2$	$1.278(4)$
$\mathrm{C} 1-\mathrm{O} 1$	$1.318(4)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.384(3)$
$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{OW}$	$90.23(11)$	$\mathrm{O} W-\mathrm{Zn} 1-\mathrm{N} 2$	$87.17(9)$
$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{N} 2$	$77.14(9)$		

The crystal structure of $\stackrel{\text { (I) }}{(\mathrm{I}) \text {. Dashed lines indicate hydrogen bonds. H }}$ atoms not participating in the hydrogen bonding have been omitted for clarity.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1$	0.88	1.82	$2.545(3)$	138
$\mathrm{O}^{\mathrm{i}}-\mathrm{H} W A \cdots 1^{\mathrm{i}}$	0.85	2.13	$2.659(3)$	120
$\mathrm{O}^{\mathrm{H}}-\mathrm{H} W B \cdots \mathrm{O}^{\mathrm{ii}}$	0.85	1.94	$2.699(3)$	148

Symmetry codes: (i) $-x+2,-y+1,-z+1$; (ii) $x+\frac{1}{2}, y-\frac{1}{2}, z$.
H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.95-0.98 \AA, \mathrm{~N}-\mathrm{H}=0.88 \AA$ and $\mathrm{O}-\mathrm{H}=0.85 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$, or $1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$ for methyl groups and water molecules.

Data collection: SMART (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

This work was supported by the Natural Science Foundation of Henan Province (grant No. 0611011900).

References

Ali, M. A. \& Livingstone, S. E. (1974). Coord. Chem. Rev. 13, 101-132.
Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
Hu, Z. Q., Ding, Yu., Jia, B., Shi, S. M., Cheng, C. X. \& Cao, M. N. (2006). Chin. J. Inorg. Chem. 22, 925-929.

Kraudelt, P., Ludwig, E., Schilde, U. \& Uhlemann, E. (1996). Z. Naturforsch. Teil B, 51, 563-566.
Li, M. X., Cai, P., Duan, C. Y., Lu, F., Xie, J. \& Meng, Q. J. (2004). Inorg. Chem. 43, 5174-5176.
Rodriguez-Arguelles, M. C., Belicchi Ferrari, M., Bisceglie, F., Pelizzi, C., Pelosi, G., Pinelli, S. \& Sassi, M. (2004). J. Inorg. Biochem. 98, 313-321.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

