Received 11 August 2006 Accepted 18 August 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ming-Xue Li,^a* Jing Zhou,^a Lin Yan^b and Jing-Ping Wang^a

^aInstitute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475001, People's Republic of China, and ^bCollege of Pharmacy, Henan University, Kaifeng, Henan 475001, People's Republic of China

Correspondence e-mail: limingxue@henu.edu.cn

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.005 Å R factor = 0.043 wR factor = 0.100 Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. In the title compound, $[Zn(C_{10}H_{11}N_2O_2)_2(H_2O)_2]$, the Zn^{II} atom lies on an inversion centre, and is coordinated in a distorted octahedral geometry by two carbonyl O atoms and two imine N atoms from two anionic bidentate acetone (2-oxidobenzoyl)hydrazone ligands and two aqua ligands. The complexes are linked together *via* O-H···O hydrogen bonds, leading to a two-dimensional network.

 $\kappa^2 N, O$]diaguazinc(II)

trans-Bis[acetone (2-oxidobenzoyl)hydrazonato-

Comment

Recently, there has been considerable interest in the chemistry of metal complexes with Schiff base ligands containing N and O atoms as donors (Ali & Livingstone, 1974; Li *et al.*, 2004; Rodriguez-Arguelles *et al.*, 2004). Here, we report the crystal structure of the title compound, (I).

In compound (I), Zn^{II} atom lies on an inversion centre and exhibits a distorted octahedral coordination geometry, with carbonyl atom O2 and imine atom N2 of the anionic acetone-*N*-salicyloylhydrazone ligands in the equatorial plane, and water molecules (O3) in the axial positions (Fig. 1). The phenol group of the ligand is deprotonated, in contrast with the Cu^{II} complex with an analogous ligand (Kraudelt *et al.*, 1996). The C7–O2 and C8–N2 bond distances (Table 1) are mostly consistent with double-bond character. In contrast, the C1–O1 and C7–N1 bond lengths are within the range for normal single bonds (Hu *et al.*, 2006).

There is an intramolecular N1-H1A \cdots O1 hydrogen bond (Table 2). The complexes are linked *via* O-H \cdots O hydrogen bonds, forming a two-dimensional network (Fig. 2).

Experimental

All reagents were commercially available and of analytical grade. To a solution of $Zn(CH_3COO)_2 \cdot 2H_2O$ (0.110 g, 0.5 mmol) in methanol (5 ml) was slowly added a suspension of acetone-N-salicyloylhydrazone (0.192 g, 1.0 mmol) in methanol (10 ml). The suspension dissolved partially, and after stirring for 24 h, the reaction mixture

© 2006 International Union of Crystallography All rights reserved

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Atoms N2A, O2A and OWA and unlabelled atoms are related to atoms N2, O2 and OW and other labelled atoms by the symmetry operation (2 - x, -y, 1 - z).

was filtered. Crystals of (I) suitable for X-ray diffraction analysis were obtained from the filtrate by slow evaporation at room temperature. Elemental analysis, calculated for $C_{20}H_{26}N_4O_6Zn$: C49.65, H 5.42, N 11.58%; found: C 49.44, H 5.33, N 11.45%.

Z = 4

 $D_x = 1.412 \text{ Mg m}^{-3}$

Irregular fragment, colourless

 $0.20\,\times\,0.16\,\times\,0.12$ mm

Mo $K\alpha$ radiation

 $\mu = 1.12 \text{ mm}^-$

T = 173 (2) K

Crystal data

 $\begin{bmatrix} Zn(C_{10}H_{11}N_2O_2)_2(H_2O)_2 \end{bmatrix}$ $M_r = 483.82$ Monoclinic, C2/c a = 12.246 (3) Å b = 8.6666 (18) Å c = 21.714 (4) Å $\beta = 98.955$ (4)° V = 2276.3 (8) Å³

Data collection

5449 measured reflections
1990 independent reflections
1506 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.048$
$\theta_{\rm max} = 25.0^{\circ}$

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.043$	$w = 1/[\sigma^2(F_o^2) + (0.048P)^2]$
$wR(F^2) = 0.100$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
1990 reflections	$\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$
144 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Zn1-O2	2.062 (2)	C7-O2	1.243 (4)
Zn1-OW	2.074 (2)	C7-N1	1.341 (4)
Zn1-N2	2.204 (3)	C8-N2	1.278 (4)
C1-O1	1.318 (4)	N1-N2	1.384 (3)
O2-Zn1-OW	90.23 (11)	OW-Zn1-N2	87.17 (9)
O2-Zn1-N2	77.14 (9)		

Figure 2

The crystal structure of (I). Dashed lines indicate hydrogen bonds. H atoms not participating in the hydrogen bonding have been omitted for clarity.

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots O1$ $OW - HWA \cdots O1^{i}$ $OW - HWB \cdots O1^{ii}$	0.88 0.85 0.85	1.82 2.13 1.94	2.545 (3) 2.659 (3) 2.699 (3)	138 120 148
			1 1	

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) $x + \frac{1}{2}$, $y - \frac{1}{2}$, z.

H atoms were positioned geometrically and refined using a riding model, with C-H = 0.95–0.98 Å, N-H = 0.88 Å and O-H = 0.85 Å, and with $U_{\rm iso}$ (H) = 1.2 $U_{\rm eq}$ (C,N), or 1.5 $U_{\rm eq}$ (C,O) for methyl groups and water molecules.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXL97*; software used to prepare material for publication: *SHELXL97*.

This work was supported by the Natural Science Foundation of Henan Province (grant No. 0611011900).

References

Ali, M. A. & Livingstone, S. E. (1974). Coord. Chem. Rev. 13, 101-132.

- Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
- Hu, Z. Q., Ding, Yu., Jia, B., Shi, S. M., Cheng, C. X. & Cao, M. N. (2006). Chin. J. Inorg. Chem. 22, 925–929.
- Kraudelt, P., Ludwig, E., Schilde, U. & Uhlemann, E. (1996). Z. Naturforsch. Teil B, 51, 563–566.
- Li, M. X., Cai, P., Duan, C. Y., Lu, F., Xie, J. & Meng, Q. J. (2004). *Inorg. Chem.* **43**, 5174–5176.
- Rodriguez-Arguelles, M. C., Belicchi Ferrari, M., Bisceglie, F., Pelizzi, C., Pelosi, G., Pinelli, S. & Sassi, M. (2004). J. Inorg. Biochem. 98, 313–321.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.